The Journal of Nonlinear Sciences and Applications http://www.tjnsa.com

RELATED FIXED POINT THEOREMS IN FUZZY METRIC SPACES

K. P. R. RAO^{1*}, ABDELKRIM ALIOUCHE² AND G. RAVI BABU³

ABSTRACT. We prove a related fixed point Theorem for four mappings which are not continuous in four fuzzy metric spaces, one of them is a sequentially compact fuzzy metric space. Our Theorem in the metric version generalizes Theorem 4 of [1]. Finally, We give a fuzzy version of Theorem 3 of [1].

1. INTRODUCTION AND PRELIMINARIES

The concept of fuzzy sets was introduced initially by Zadeh [11] in 1965. George and Veeramani [4] modified the concept of fuzzy metric space introduced by Kramosil and Michalek [6]. Recently, Fisher [3], Telci [10] and Aliouche and Fisher [1] proved some related fixed point Theorems in compact metric spaces. Motivated by a work due to Popa [7], we have observed that proving fixed point theorems using an implicit relation is a good idea since it covers several contractive conditions rather than one contractive condition. In this paper, we mainly prove a related fixed point Theorem for four mappings which are not necessarily continuous in four fuzzy metric spaces, using an implicit relation, one of them is a sequentially compact fuzzy metric space. One of our Theorems in the metric version generalizes a theorem of Aliouche and Fisher [1]. We give also a fuzzy version of Theorem 3 of [1].

Definition 1.1 ([9]). A binary operation $* : [0, 1] \times [0, 1] \longrightarrow [0, 1]$ is a continuous t-norm if it satisfies the following conditions:

1) * is associative and commutative,

2) * is continuous,

Date: Received: March 2008; Revised: Dec 2008

^{*} Corresponding author.

²⁰⁰⁰ Mathematics Subject Classification. Primary 47H10; Secondary 54H25.

Key words and phrases. Fuzzy metric space, implicit relation, sequentially compact Fuzzy metric space, related fixed point.

3) a * 1 = a for all $a \in [0, 1]$,

4) $a * b \le c * d$ whenever $a \le c$ and $b \le d$, for each $a, b, c, d \in [0, 1]$.

Two typical examples of a continuous t-norm are a * b = ab and $a * b = \min\{a, b\}$.

Definition 1.2 ([4]). A 3-tuple (X, M, *) is called a fuzzy metric space if X is an arbitrary (non-empty) set, * is a continuous t-norm a and M is a fuzzy set on $X^2 \times (0, \infty)$ satisfying the following conditions for each $x, y, z \in X$ and t, s > 0,

- 1) M(x, y, t) > 0,
- 2) M(x, y, t) = 1 if and only if x = y,
- 3) M(x, y, t) = M(y, x, t),
- 4) $M(x, y, t) * M(y, z, s) \le M(x, z, t + s),$
- 5) $M(x, y, .) : (0, \infty) \longrightarrow [0, 1]$ is continuous.

Definition 1.3 ([3]). Let (X, M, *) be a fuzzy metric space.

1) For t > 0, the open ball B(x, r, t) with center $x \in X$ and radius 0 < r < 1 is defined by

$$B(x, r, t) = \{ y \in X : M(x, y, t) > 1 - r \}.$$

2) Let (X, M, *) be a fuzzy metric space and τ be the set of all $A \subset X$ with $x \in A$ if and only if there exist t > 0 and 0 < r < 1 such that $B(x, r, t) \subset A$. Then, τ is a topology on X induced by the fuzzy metric M.

3) A sequence $\{x_n\}$ in X converges to x if and only if for any $0 < \epsilon < 1$ and t > 0, there exists $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$, $M(x_n, x, t) > 1 - \epsilon$; i.e., $M(x_n, x_m, t) \to 1$ as $n \to \infty$ for all t > 0.

4) A sequence $\{x_n\}$ in X is called a Cauchy sequence if and only if for any $0 < \epsilon < 1$ and t > 0, there exists $n_0 \in \mathbb{N}$ such that for all $n, m \ge n_0$, $M(x_n, x_m, t) > 1 - \epsilon$; i.e., $M(x_n, x_m, t) \to 1$ as $n, m \to \infty$ for all t > 0.

5) A fuzzy metric space (X, M, t) in which every Cauchy sequence is convergent is said to be complete.

Definition 1.4. A subset A of X is said to be F-bounded if there exists t > 0 and 0 < r < 1 such that M(x, y, t) > 1 - r for all $x, y \in A$.

Lemma 1.5 ([5]). Let (X, M, *) be a fuzzy metric space. Then, M(x, y, t) is non-decreasing with respect to t, for all x, y in X.

Lemma 1.6 ([5]). Let (X, M, *) be a fuzzy metric space. Then, M is a continuous function on $X^2 \times (0, \infty)$.

Definition 1.7. (X, M, *) is said to be sequentially compact fuzzy metric space if every sequence in X has a convergent sub-sequence in it.

Let Φ be the set of all functions $\phi : [0,1]^6 \longrightarrow [0,1]$ such that if either $\phi(u,1,u,v,v,1) > 0$ or $\phi(u,u,1,v,1,v) > 0$ for all $u,v \in [0,1)$, then u > v.

Example 1.8. Let $\phi(t_1, t_2, t_3, t_4, t_5, t_6) = t_1 - \min\{t_2, t_3, t_4, t_5, t_6\}$. Then $\phi \in \Phi$.

2. Main results

Theorem 2.1. Let (X, M_1, θ_1) , (Y, M_2, θ_2) , (Z, M_3, θ_3) and (W, M_4, θ_4) be fuzzy metric spaces and $B: X \longrightarrow Y, T: Y \longrightarrow Z$, $A: Z \longrightarrow W, S: W \longrightarrow X$ be mappings satisfying

(1)
$$\phi_1 \begin{pmatrix} M_1(SATy, SATBx, t), M_1(x, SATy, t), \\ M_1(x, SATBx, t), M_2(y, Bx, t), \\ M_2(y, BSATy, t), M_2(Bx, BSATy, t) \end{pmatrix} > 0$$

for all $x \in X$, $y \in Y$ with $y \neq Bx$ and for all t > 0, where $\phi_1 \in \Phi$,

(2)
$$\phi_2 \begin{pmatrix} M_2(BSAz, BSATy, t), M_2(y, BSAz, t), \\ M_2(y, BSATy, t), M_3(z, Ty, t), \\ M_3(z, TBSAz, t), M_3(Ty, TBSAz, t) \end{pmatrix} > 0$$

for all $z \in Z$, $y \in Y$ with $z \neq Ty$ and for all t > 0, where $\phi_2 \in \Phi$,

(3)
$$\phi_3 \begin{pmatrix} M_3(TBSw, TBSAz, t), M_3(z, TBSw, t), \\ M_3(z, TBSAz, t), M_4(w, Az, t), \\ M_4(w, ATBSw, t), M_4(Az, ATBSw, t) \end{pmatrix} > 0$$

for all $z \in Z$, $w \in W$ with $w \neq Az$ and for all t > 0, where $\phi_3 \in \Phi$,

(4)
$$\phi_4 \begin{pmatrix} M_4(ATBx, ATBSw, t), M_4(w, ATBx, t), \\ M_4(w, ATBSw, t), M_1(x, Sw, t), \\ M_1(x, SATBx, t), M_1(Sw, SATBx, t) \end{pmatrix} > 0$$

for all $x \in X$, $w \in W$ with $x \neq Sw$ and for all t > 0, where $\phi_4 \in \Phi$. Further, suppose that one of the following is true:

(a) (X, M_1, θ_1) is sequentially compact and SATB is continuous on X.

(b) (Y, M_2, θ_2) is sequentially compact and BSAT is continuous on Y.

(c) (Z, M_3, θ_3) is sequentially compact and TBSA is continuous on Z.

(d) (W, M_4, θ_4) is sequentially compact and ATBS is continuous on W.

Then, SATB has a unique fixed point $u \in X$, BSAT has a unique fixed point $v \in Y$, TBSA has a unique fixed point $w \in Z$ and ATBS has a unique fixed point $q \in W$. Further, Bu = v, Tv = w, Aw = q and Sq = u.

Proof. Suppose that (a) holds. For every t > 0, define $\phi(x) = M_1(x, SATBx, t)$ for all $x \in X$. Then, there exists $p \in X$ such that $\phi(p) = M_1(p, SATBp, t) = \max{\phi(x) : x \in X}$.

Suppose that $BSATBSATBp \neq BSATBSATBsATBp$. Then, $TBSATBp \neq TBSATBSATBp$, $ATBp \neq ATBSATBp$ and $p \neq SATBp$.

Putting y = BSATBSATBp and x = SATBSATBSATBp in (1) we have

$$\phi_{1} \left(\begin{array}{c} M_{1}(SATBSATBSATBp, SATBSATBSATBSATBp, t), \\ M_{1}(SATBSATBSATBp, SATBSATBSATBp, t), \\ M_{1}(SATBSATBSATBp, SATBSATBSATBSATBp, t), \\ M_{2}(BSATBSATBp, BSATBSATBSATBp, t), \\ M_{2}(BSATBSATBp, BSATBSATBSATBp, t), \\ M_{2}(BSATBSATBp, BSATBSATBSATBp, t), \\ M_{2}(BSATBSATBp, BSATBSATBSATBp, t) \end{array} \right) > 0$$

and so

(5) $\phi(SATBSATBSATBp) > M_2(BSATBSATBp, BSATBSATBSATBp, t).$ Putting y = BSATBSATBp and z = TBSATBp in (2) we get

$$\phi_{2} \begin{pmatrix} M_{2}(BSATBSATBp, BSATBSATBSATBp, t), \\ M_{2}(BSATBSATBp, BSATBSATBp, t), \\ M_{2}(BSATBSATBp, BSATBSATBp, t), \\ M_{3}(TBSATBp, TBSATBSATBp, t), \\ M_{3}(TBSATBp, TBSATBSATBp, t), \\ M_{3}(TBSATBp, TBSATBSATBp, t), \\ M_{3}(TBSATBp, TBSATBSATBp, t) \end{pmatrix} > 0.$$

Therefore

(6)
$$M_2(BSATBSATBp, BSATBSATBSATBp, t)$$

> $M_3(TBSATBp, TBSATBSATBp, t)$

Putting z = TBSATBp and w = ATBp in (3) we obtain

$$\phi_{3} \begin{pmatrix} M_{3}(TBSATBp, TBSATBSATBp, t), \\ M_{3}(TBSATBp, TBSATBp, t), \\ M_{3}(TBSATBp, TBSATBSATBp, t), \\ M_{4}(ATBp, ATBSATBp, t), \\ M_{4}(ATBp, ATBSATBp, t), \\ M_{4}(ATBSATBp, ATBSATBp, t), \end{pmatrix} > 0$$

and so

(7)
$$M_3(TBSATBp, TBSATBSATBp, t) > M_4(ATBp, ATBSATBp, t).$$

Putting w = ATBp and x = p in (4) we have

$$\phi_4 \left(\begin{array}{c} M_4(ATBp, ATBSATBp, t), M_4(ATBp, ATBp, t), \\ M_4(ATBP, ATBSATBp, t), M_1(p, SATBp, t), \\ M_1(p, SATBp, t), M_1(SATBp, SATBp, t) \end{array} \right) > 0.$$

Hence

(8)
$$M_4(ATBp, ATBSATBp, t) > M_1(p, SATBp, t) = \phi(p).$$

From (5), (6), (7) and (8) we get $\phi(SATBSATBSATBp) > \phi(p)$ which is a contradiction. Therefore

(9) BSATBSATBp = BSATBSATBSATBp.

Denote $BSATBSATBp = v \in Y$. Then from (9), v = BSATv. Let $Tv = w \in Z$, $Aw = q \in W$, $Sq = u \in X$. Then v = BSATv = BSAw = BSq = Bu. Also, SATBu = SATv = SAw = Sq = u, TBSAw = TBSq = TBu = Tv = wand ATBSq = ATBu = ATv = Aw = q.

For the uniqueness of u, suppose that SATBu' = u' with $u \neq u'$. Then, $SATBu \neq SATBu'$, $ATBu \neq ATBu'$, $TBu \neq TBu'$ and $Bu \neq Bu'$.

Putting x = u and y = Bu' in (1) we have

$$\phi_1 \left(\begin{array}{c} M_1(SATBu', SATBu, t), M_1(u, SATBu', t), \\ M_1(u, SATBu, t), M_2(Bu', Bu, t), \\ M_2(Bu', BSATBu', t), M_2(Bu, BSATBu', t) \end{array} \right) > 0$$

and so

$$M_1(u, u', t) > M_2(Bu, Bu', t)....(10).$$

Putting z = TBu, y = Bu' in (2) we get

$$\phi_2 \left(\begin{array}{c} M_2(BSATBu, BSATBu', t), M_2(Bu', BSATBu, t), \\ M_2(Bu', BSATBu', t), M_3(TBu, TBu', t), \\ M_3(TBu, TBSATBu, t), M_3(TBu', TBSATBu, t) \end{array} \right) > 0.$$

Therefore

$$M_2(Bu, Bu', t) > M_3(TBu, TBu', t)....(11)$$

Putting z = TBu, w = ATBu' in (3) we obtain

$$\phi_3 \left(\begin{array}{c} M_3(TBSATBu', TBSATBu, t), M_3(TBu, TBSATBu', t), \\ M_3(TBu, TBSATBu, t), M_4(ATBu', ATBu, t), \\ M_4(ATBu', ATBSATBu', t), M_4(ATBu, ATBSATBu', t) \end{array} \right) > 0.$$

Hence

$$M_3(TBu, TBu', t) > M_4(ATBu, ATBu', t)....(12)$$

Putting x = SATBu, w = ATBu' in (4) we have

$$\phi_4 \left(\begin{array}{c} M_4(ATBSATBu, ATBSATBu', t), M_4(ATBu', ATBSATBu, t), \\ M_4(ATBu', ATBSATBu', t), M_1(SATBu, SATBu', t), \\ M_1(SATBu, SATBSATBu, t), M_1(SATBu', SATBSATBu, t)) \end{array} \right) > 0$$

and so

$$M_4(ATBu, ATBu', t) > M_1(u, u', t)....(13)$$

Using (10), (11), (12) and (13) we get

$$M_1(u, u', t) > M_1(u, u', t)$$

which is a contradiction. Hence, u is the unique fixed point of SATB. Similarly, we can prove the uniqueness of fixed points of BSAT, TBSA and ATBS. In a similar manner, the Theorem holds if either (b) or (c) or (d) is true.

The following Example illustrates Theorem 2.1.

Example 2.2. Let
$$X = [0,1], Y = [1,2), Z = (2,3]$$
 and $W = [3,4)$ and $M_1(x,y,t) = \frac{t}{t+|x-y|}, M_2(y,z,t) = \frac{t}{t+|y-z|}, M_3(z,w,t) = \frac{t}{t+|z-w|}$ and $M_4(w,x,t) = \frac{t}{t+|w-x|}.$
Define $B: X \longrightarrow Y$ by:
 $Bx = \begin{cases} 1 & \text{if } x \in [0,3/4], \\ 3/2 & \text{if } x \in (3/4,1]. \end{cases}$

198

$$T: Y \longrightarrow Z \text{ by } Ty = 3 \text{ for all } y \in Y, A: Z \longrightarrow W \text{ by}$$
$$Az = \begin{cases} 7/2 & \text{if } x \in (2, 5/2], \\ 3 & \text{if } x \in (5/2, 3]. \end{cases}$$

and $S: W \longrightarrow X$ by Sw = 1 for all $w \in W$. Let

$$\phi_1(t_1, t_2, t_3, t_4, t_5, t_6) = t_1 - \min\{t_2, t_3, t_4, t_5, t_6\}$$
 and
 $\phi_1 = \phi_2 = \phi_3 = \phi_4.$

In this Example, the inequalities (1), (2), (3) and (4) are satisfied since the value of the left hand side of each inequality is 1. Clearly, SATB(1) = 1, BSAT(3/2) = 3/2, TBSA(3) = 3, ATBS(3) = 3 and

B1 = 3/2, T(3/2) = 3, A3 = 3, S3 = 1.

If B = T, T = S, A = R, S = I (Identity map) and W = X in Theorem 2.1 we get the following Theorem.

Theorem 2.3. Let (X, M_1, θ_1) , (Y, M_2, θ_2) and (Z, M_3, θ_3) be fuzzy metric spaces and $T: X \longrightarrow Y$, $S: Y \longrightarrow Z$, $R: Z \longrightarrow X$ be mappings satisfying

(1)
$$\phi_1 \left(\begin{array}{c} M_1(RSy, RSTx, t), M_1(x, RSy, t), M_1(x, RSTx, t), \\ M_2(y, Tx, t), M_2(y, TRSy, t), M_2(Tx, TRSy, t) \end{array} \right) > 0$$

for all $x \in X, y \in Y$ with $y \neq Tx$ and for all $t > 0$, where $\phi_1 \in \Phi$,

(2)
$$\phi_2 \left(\begin{array}{c} M_2(TRz, TRSy, t), M_2(y, TRz, t), M_2(y, TRSy, t), \\ M_3(z, Sy, t), M_3(z, STRz, t), M_3(Sy, STRz, t) \end{array} \right) > 0$$

for all $z \in Z$, $y \in Y$ with $z \neq Sy$ and for all t > 0, where $\phi_2 \in \Phi$,

(3)
$$\phi_3 \begin{pmatrix} M_3(STx, STRz, t), M_3(z, STx, t), M_3(z, STRz, t), \\ M_1(x, Rz, t), M_1(x, RSTx, t), M_1(Rz, RSTx, t) \end{pmatrix} > 0$$

for all $z \in Z$, $x \in X$ with $x \neq Rz$ and for all t > 0, where $\phi_3 \in \Phi$. Further, suppose that one of the following is true:

(a) (X, M_1, θ_1) is sequentially compact and RST is continuous on X.

(b) (Y, M_2, θ_2) is sequentially compact and TRS is continuous on Y.

(c) (Z, M_3, θ_3) is sequentially compact and STR is continuous on Z.

Then, RST has a unique fixed point $u \in X$, TRS has a unique fixed point $v \in Y$ and STR has a unique fixed point $w \in Z$. Further, Tu = v, Sv = w and Rw = u.

If R = I (Identity map) and Z = X in Theorem 2.3 we obtain

Theorem 2.4. Let (X, M_1, θ_1) and (Y, M_2, θ_2) be fuzzy metric spaces and $T : X \longrightarrow Y, S : Y \longrightarrow X$ be mappings satisfying

$$(1) \ \phi_1 \left(\begin{array}{c} M_1(Sy, STx, t), M_1(x, Sy, t), M_1(x, STx, t), \\ M_2(y, Tx, t), M_2(y, TSy, t), M_2(Tx, TSy, t) \end{array} \right) > 0 \\ for \ all \ x \in X, \ y \in Y \ with \ y \neq Tx \ and \ for \ all \ t > 0, \ where \ \phi_1 \in \Phi, \\ (2) \ \phi_2 \left(\begin{array}{c} M_2(Tx, TSy, t), M_2(y, Tx, t), M_2(y, TSy, t), \\ M_1(x, Sy, t), M_1(x, STx, t), M_1(Sy, STx, t) \end{array} \right) > 0 \\ for \ all \ x \in X, \ y \in Y \ with \ y \neq Tx \ and \ for \ all \ t > 0, \ where \ \phi_1 \in \Phi, \\ (2) \ \phi_2 \left(\begin{array}{c} M_2(Tx, TSy, t), M_2(y, Tx, t), M_2(y, TSy, t), \\ M_1(x, Sy, t), M_1(x, STx, t), M_1(Sy, STx, t) \end{array} \right) > 0 \\ for \ where \ \phi_1 \in \Phi, \ where \ \phi_1 \in \Phi, \\ (2) \ \phi_2 \left(\begin{array}{c} M_2(Tx, TSy, t), M_2(y, Tx, t), M_2(y, TSy, t), \\ M_1(x, Sy, t), M_1(x, STx, t), M_1(Sy, STx, t) \end{array} \right) > 0 \\ for \ here \ here$$

for all $x \in X$, $y \in Y$ with $x \neq Sy$ and for all t > 0, where $\phi_2 \in \Phi$. Further, suppose that one of the following is true:

199

(a) (X, M_1, θ_1) is sequentially compact and ST is continuous on X.

(b) (Y, M_2, θ_2) is sequentially compact and TS is continuous on Y.

Then, ST has a unique fixed point $u \in X$ and TS has a unique fixed point $v \in Y$. Further, Tu = v and Sv = u.

1) The metric version of Theorem 2.4 in compact metric spaces generalizes and improves Theorem 4 of Aliouche and Fisher [1] under the implicit relation $\phi : \mathbb{R}^6_+ \to \mathbb{R}$ such that $\phi(u, u, 0, v, 0, v) < 0$ or $\phi(u, 0, u, v, v, 0) < 0$ implies u < v. 2) If $\phi_1(t_1, t_2, t_3, t_4, t_5, t_6) = \phi_2(t_1, t_2, t_3, t_4, t_5, t_6) = t_1 - \min\{t_2, t_3, t_4, t_5, t_6\}$ in

Theorem 2.4, we get a fuzzy version of a Theorem of Fisher [3]. Finally, we give a fuzzy version of Theorem 3 of Aliouche and Fisher [1] using the following implicit relations.

We denote by Ψ the set of all functions $\psi: [0,1]^4 \longrightarrow [0,1]$ such that

:(i) ψ is upper semi continuous in each coordinate variable,

(ii) ψ is decreasing in 3rd and 4th variable,

(iii) if either $\psi(u, v, 1, u) \ge 0$ or $\psi(u, 1, v, 1) \ge 0$ or $\psi(u, v, u, 1) \ge 0$ for all $u, v \in [0, 1]$, then $u \ge v$.

Example 2.5. $\psi(t_1, t_2, t_3, t_4) = t_1 - \min\{t_2, t_3, t_4\},\$

Example 2.6. $\psi(t_1, t_2, t_3, t_4) = t_1 - \phi_1(\min\{t_2, t_3, t_4\})$, where $\phi_1 : (0, 1] \longrightarrow (0, 1]$ is an increasing and continuous function with $\phi(t) > t$ for 0 < t < 1. For example $\phi_1(t) = \sqrt{t}$ or $\phi_1(t) = t^h$ for 0 < h < 1.

We need the following Lemma of [2].

Lemma 2.7 ([2]). Let $\{x_n\}$ be a sequence in a fuzzy metric space (X, M, *) with $M(x, y, t) \longrightarrow 1$ as $t \longrightarrow \infty$ for all $x, y \in X$. If there exists a number $k \in (0, 1)$ such that

$$M(x_{n+1}, x_n, kt) \ge M(x_n, x_{n-1}, t)$$

for all t > 0 and n = 1, 2, 3, ..., then $\{x_n\}$ is a Cauchy sequence in X.

Theorem 2.8. Let (X, M_1, θ_1) and (Y, M_2, θ_2) be complete fuzzy metric spaces with $M_1(x, x', t) \longrightarrow 1$ as $t \longrightarrow \infty$ for all $x, x' \in X$ and $M_2(y, y', t) \longrightarrow 1$ as $t \longrightarrow \infty$ for all $y, y' \in Y$. Let $T : X \longrightarrow Y$, $S : Y \longrightarrow X$ be mappings satisfying:

(1)
$$\psi_1(M_1(Sy, STx, kt), M_2(y, Tx, t), M_1(x, Sy, t), M_1(x, STx, t)) \ge 0,$$

(2) $\psi_2(M_2(Tx, TSy, kt), M_1(x, Sy, t), M_2(y, Tx, t), M_2(y, TSy, t)) \geq 0$

for all $x \in X$, $y \in Y$ and for all t > 0, where $\psi_1, \psi_2 \in \Psi$ and 0 < k < 1. Then, ST has a unique fixed point $u \in X$ and TS has a unique fixed point $v \in Y$. Further, Tu = v and Sv = u.

Proof. Let x_0 be an arbitrary point in X. We define the sequences $\{x_n\}$ and $\{y_n\}$ in X and Y respectively by: $y_n = Tx_{n-1}$, $x_n = Sy_n$ for n = 1, 2, ...Putting $x = x_n$ and $y = y_n$ in (1), we have

$$\psi_1(M_1(x_n, x_{n+1}, kt), M_2(y_n, y_{n+1}, t), 1, M_1(x_n, x_{n+1}, t)) \ge 0$$

Since ψ_1 is decreasing in 4th variable, we get

$$\psi_1(M_1(x_n, x_{n+1}, kt), M_2(y_n, y_{n+1}, t), 1, M_1(x_n, x_{n+1}, kt)) \ge 0.$$

From (iii), we obtain

$$M_1(x_n, x_{n+1}, kt) \ge M_2(y_n, y_{n+1}, t)...(3)$$

Putting $x = x_{n-1}$ and $y = y_n$ in (2), we have

$$\psi_2(M_2(y_n, y_{n+1}, kt), M_1(x_{n-1}, x_n, t), 1, M_2(y_n, y_{n+1}, t)) \ge 0.$$

As ψ_2 is decreasing in 4th variable, we get

$$\psi_2(M_2(y_n, y_{n+1}, kt), M_1(x_{n-1}, x_n, t), 1, M_2(y_n, y_{n+1}, kt)) \ge 0.$$

From (iii), we obtain

$$M_2(y_n, y_{n+1}, kt) \ge M_1(x_{n-1}, x_n, t)....(4).$$

Using (3) and (4) we have for n = 1, 2, ...

$$M_1(x_n, x_{n+1}, t) \ge M_1(x_{n-1}, x_n, t/k^2)$$
 and
 $M_2(y_n, y_{n+1}, t) \ge M_2(y_{n-1}, y_n, t/k^2).$

From Lemma 2.7, it follows that $\{x_n\}$ and $\{y_n\}$ are Cauchy sequences in X and Y respectively. Hence, $\{x_n\}$ converges to $u \in X$ and $\{y_n\}$ converges to $v \in Y$. Putting $x = x_{n-1}$ and y = v in (1), we get

$$\psi_1(M_1(Sv, STx_{n-1}, kt), M_2(v, Tx_{n-1}, t), M_1(x_{n-1}, Sv, t), M_1(x_{n-1}, STx_{n-1}, t)) \ge 0$$

Letting $n \longrightarrow \infty$, we have

$$\psi_1(M_1(Sv, u, kt), 1, M_1(u, Sv, t), 1) \ge 0.$$

Using (iii), we obtain

$$M_1(Sv, u, kt) \ge M_1(u, Sv, t)$$

and so Sv = u. Similarly, we can show that Tu = v. Now, STu = Sv = u and TSv = Tu = v.

To prove the uniqueness of u, suppose that ST has a second fixed point u' in X. Putting x = u', y = v in (1), we get

$$\psi_1(M_1(u, u', kt), M_2(Tu, Tu', t), M_1(u', u, t), 1)) \ge 0.$$

Since ψ_1 is decreasing in 3rd variable, we have

$$\psi_1(M_1(u, u', kt), M_2(Tu, Tu', t), M_1(u', u, kt), 1)) \ge 0.$$

From (iii), we obtain

$$M_1(u, u', kt) \ge M_2(Tu, Tu', t).$$

Similarly, we have

$$M_2(Tu, Tu', kt) \ge M_1(u, u', t).$$

Hence

$$M_1(u, u', t) \ge M_1(u, u', t/k^2)$$

and so u = u'. The uniqueness of v follows in a similar manner.

1) If $\psi_1(t_1, t_2, t_3, t_4) = \psi_2(t_1, t_2, t_3, t_4) = t_1 - \min\{t_2, t_3, t_4\}$ in Theorem 2.7, we get a fuzzy version of a Theorem of Fisher [3].

2) As in Theorems 2.4 and 2.7, we can obtain fuzzy versions of Theorems of [9].

The following Example support our Theorem 2.7.

Example 2.9. Let X = [0,1] = Y and $M_1(x,y,t) = M_2(y,x,t) = \frac{t}{t+|x-y|}$ for all $x, y \in X$ and for all t > 0. Define $T : X \longrightarrow Y$ and $S : Y \longrightarrow X$ by:

$$Tx = \begin{cases} x/2 & \text{if } x \in (0,1], \\ 1/2 & \text{if } x = 0. \end{cases},$$

Sy = 1/2 for all $y \in Y$. Let

$$\psi_1(t_1, t_2, t_3, t_4) = \psi_2(t_1, t_2, t_3, t_4) = t_1 - \min\{t_2, t_3, t_4\}.$$

In this Example, the inequality (1) is satisfied since the value of the left hand side of inequality is 1 and the inequality (2) is satisfied with k = 1/2. Clearly, ST(1/2) = 1/2, TS(1/4) = 1/4, S(1/4) = 1/2 and T(1/2) = 1/4.

References

- A. Aliouche and B. Fisher, Fixed point theorems for mappings satisfying implicit relation on two complete and compact metric spaces, Applied Mathematics and Mechanics., 27 (9) (2006), 1217-1222.
- [2] Y. J. Cho, Fixed points in fuzzy metric spaces, J. Fuzzy. Math., 5 (4) (1997), 949-962.
- [3] B. Fisher, Fixed point on two metric spaces, Glasnik Mat., 16 (36) (1981), 333-337.
- [4] A. George and P. Veeramani, On some result in fuzzy metric space, Fuzzy Sets Syst., 64 (1994), 395-399.
- [5] M. Grabiec, Fixed points in fuzzy metric spaces Fuzzy Sets Syst., 27 (1988), 385-389.
- [6] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica., 11 (1975), 326-334.
- [7] V. Popa, Some fixed point theorems for compatible mappings satisfying an implicit relation, Demonstratio Math., 32 (1999),157-163.
- [8] J. Rodríguez López and S. Ramaguera, The Hausdorff fuzzy metric on compact sets, Fuzzy Sets Sys., 147 (2004), 273-283.
- [9] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 10 (1960), 313–334.
- [10] M.Telci, Fixed points on two complete and compact metric spaces, Applied Mathematics and Mechanics., 22 (5) (2001), 564-568.
- [11] L. A. Zadeh, Fuzzy sets, Inform and Control., 8 (1965), 338-353.

¹ AND ³ DEPT. OF APPLIED MATHEMATICS, ACHARYA NAGARJUNA, UNIVERSITY-NUZVID CAMPUS, NUZVID-521 201, KRISHNA DT., A.P., INDIA.

E-mail address: kprrao2004@yahoo.com

² Department of Mathematics, University of Larbi Ben M' Hidi, Oum-El-Bouaghi, 04000, Algeria.

E-mail address: alioumath@yahoo.fr